
ORIGINAL PAPER

Theoretical study on modeling and prediction of optical
rotation for biodegradable polymers containing α-amino
acids using QSAR approaches

Shadpour Mallakpour & Mehdi Hatami &
Hassan Golmohammadi

Received: 20 July 2010 /Accepted: 20 October 2010 /Published online: 9 November 2010
# Springer-Verlag 2010

Abstract The main purpose of the present study was
modeling and prediction of the optical rotation ([M]D) of
some biodegradable polymers containing α-amino acids
using quantitative structure-activity relationship (QSAR)
approaches. In order to attain this goal, the optical rotation
of a collection of 53 polymers was selected as a data set. The
data set was randomly divided into three sections, training,
test and external validation sets. By using dragon software,
various descriptors were calculated for all molecules in the
data set. The important descriptors were selected applying
genetic algorithm-partial least squares (GA-PLS) method.
Then an artificial neural network (ANN) was written with
MATLAB 7 and used these descriptors as inputs and its
output was optical rotation of desired polymers. Then, the
constructed network was used for the prediction of ([M]D
values of validation set. The squared correlation coefficient
R2 values of the ANN model for the training, test and
validation sets were 0.998, 0.996 and 0.996 respectively. The
results showed the ability of developed ANN to predict
optical rotation of various polymers.

Keywords Artificial neural network . Genetic algorithm .

Optical rotation . Partial least squares . Quantitative
structure-activity relationship

Introduction

Optical rotation, the rotation of plane-polarized light by
chiral species, takes place because such samples demon-
strate differing refractive indices for left and right circularly
polarized light [1, 2]. This phenomenon is referred to as
circular birefringence and is reliant on the propagation of
plane polarized light through a chiral medium. The optical
rotation of a chiral molecule depends on its absolute
configuration. In principle, absolute configurations of chiral
molecules should be derivable from their optical rotations.
In practice, optical rotations are seldom used for this
purpose. This is attributable to the deficiency of practical,
unfailing algorithms concerning optical rotation and abso-
lute configuration.

The molecular optical rotation of a substance [M]D can
be calculated as expressed in Eq. 1:

M½ �D ¼
X
i

f i
X
k

KXY sin ak ð1Þ

where fi is the population of the conformer i, αk is the
dihedral angle formed by the four consecutive atoms
(Fig. 1) for each conformer i and KXY is the constant of
rotation for each type of dihedral angle. The sums are
extended to all the dihedral angles (k) present in each
conformer and to all of the conformers (i).

Understanding and predicting the molecular properties of
chiral molecules is a principal aim of organic chemistry.
One of the focuses has been on the synthesis of these types
of molecules, among the ability to predict and control their
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properties. Chiral molecules are chiefly found in pharma-
ceutical chemistry, where it is sometimes necessary to
control the absolute configuration of the molecule. Exper-
imentally, reliable determination of the absolute configura-
tion of a chiral molecule (optical rotation) is very expensive
and time consuming, and is not guaranteed to be successful.
Therefore, the development of a theoretical method such as
quantitative structure–property/activity relationship (QSPR/
QSAR) appears to be valuable to estimate the optical
rotation values. The advantage of this approach over other
methods lies in the fact that the descriptors used can be
calculated from structure alone and are not dependent on
any experiment properties. Once the structure of a
compound is known, any descriptor can be calculated.
Thus, once a reliable model is established, we can use this
model to predict the property of a compound, whether it
was obtained or not.

A number of theoretical attempts to predict the optical
rotation of compounds have been performed. Nunez Miguel
et al. [3] predicted optical rotation for a series of
cyclohexane derivatives using molecular mechanics meth-
ods MM2 and MM3. Ruud and coworker [4] studied
optical rotation on difficult systems by density-functional
and coupled-cluster methods. Stephens et al. [5] developed
a method using ab initio density functional theory (DFT) to
estimate optical rotation of six 6,8-dioxabicyclo[3.2.1]
octanes. The last few years have seen an increasing interest
in the theoretical calculations [6–9] especially in optical
rotation [10–14].

Recently, artificial neural networks (ANNs) have been
used to a wide variety of chemical problems such as
spectral analysis [15], prediction of dielectric constant [16]
and mass spectral search [17]. ANNs have been applied to
QSPR/QSAR analysis since the late 1980s due to its
flexibility in modeling of nonlinear problems, mainly in
response to increase accuracy demands; they have been
widely used to predict many physicochemical properties
[18–22]. In this work QSAR studies were carried out for
the first time to find out the correlation between structural
features of biodegradable polymers with their physico-
chemical properties such as optical rotation.

Modeling methodology

Data set

The data set of optical rotation was taken from the values
reported by Mallakpour and coworkers [23–32]. The name
of molecules in the data set including biodegradable
polymers is shown in Table 1. The optical rotations of all
macromolecules included in data set were obtained under
the same conditions by a Jasco Polarimeter. The data set
was randomly divided into three groups including training,
test and validation set, which consists of 37, 8 and
8 molecules, respectively. The training and test sets were
used to build and optimize the QSAR model and the
external validation set was used to evaluate the prediction
power of the obtained model.

Descriptor calculation

The molecular descriptors were encoded numerically with
molecular features of the interested molecule. The built
model performance and the accuracy of the results are
robustly maintained by the way in which the structural
representation was performed. It is impossible to calculate
descriptors directly for an entire molecule because all the
polymers have wide distribution of molecular weight and
possess high molecular weight. As we know, if the
molecular weight is high enough, the terminal groups hold
only a very small proportion in a polymer and its effect on
the properties can be ignored. Molecular descriptors
calculated directly from the structure of the repeating units
can be used for the study of QSARs for polymers, since all
the properties depends on the chemical structure of the
polymer molecule, and all these structures were conditioned
by the repeating unit structures. Therefore, we adopted this
method and concentrated on the following model to
calculate molecular descriptors. The structures for polymers
were endcapped with the last group of the opposing side. In
the next step, the molecular structure of monomers used in
the polymerization process, were used to determine the
molecular descriptors of polymers. After providing the data
set, all monomers were drawn into Hyperchem software
and then pre-optimized using AM1 molecular mechanics
force field [33]. A more precise optimization is then done
with the semiempirical PM6 method in Mopac (2009) [34].
Since the calculated values of the electronic features of the
molecules will be influenced by the conformation used, in
the current research we made an attempt to use the most
stable conformations. To avoid the local stable conforma-
tions of the compounds, geometry optimization was run
many times with different starting points for each molecule,
and the conformation with the lowest energy was consid-
ered for the calculation of the electronic properties. In a

Fig. 1 X-C-C-Y, dihedral angle
contribution to molecular optical
rotation
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Table 1 Data set and corresponding observed and predicted values of optical rotation of polymers

Number Name of monomers of polymers [M]D ( EXP ) [M]D ( PLS) [M]D (ANN)

Training set

1 a and bisphenol A -31.00 -33.48 -31.31

2 a and 4,4'-dihydroxydiphenyl sulphide -40.90 -42.87 -41.41

3 a and 1,4-dihydroxybenzene -9.10 -8.29 -8.69

4 a and bisphenyl-2,2'-diol -9.60 -10.42 -9.63

5 b and phenol phthalein -27.80 -29.64 -26.77

6 b and bisphenol-A -17.00 -14.74 -17.76

7 b and 4,4'-hydroquinone -21.20 -22.06 -20.34

8 b and 1,8-dihydroxyanthraquinone -13.40 -16.19 -14.15

9 b and dihydroxy biphenyl -20.60 -24.82 -20.02

10 c and 1,6-hexamethylenediamine -29.30 -23.56 -28.26

11 c and 4,4'-sulfonyldianiline -26.20 -31.58 -25.47

12 d and 4,4'-sulphonyldianiline -14.20 -11.12 -15.49

13 d and 4,4'-Diaminodiphenylmethane -21.50 -16.33 -20.13

14 d and 1,4-phenylenediamine -23.20 -18.08 -24.27

15 d and 4,4'-diaminobiphenyl -35.30 -38.93 -34.05

16 e and phenolphthalein -9.20 -11.79 -8.96

17 e and 1,4-dihydroxybenzene -3.25 -5.77 -3.70

18 e and 4,6-dihydroxypyrimidine -3.25 -3.57 -3.09

19 e and 2,4'-dihydroxyacetophenone -4.38 -7.00 -4.92

20 f and 4,4'-sulphonyldianiline -55.50 -50.18 -57.04

21 f and 4,4'-diaminodiphenyl methane -48.10 -43.16 -49.36

22 f and 4,4'-diaminodiphenylether -19.20 -24.45 -19.66

23 f and m-phenylenediamine -18.30 -13.01 -17.63

24 f and 4,4'-diaminobiphenyl -40.20 -41.12 -41.32

25 g and phenolphthalein -7.20 -12.72 -7.85

26 g 1,4-Dihydroxybenzene -3.25 -5.07 -3.77

27 g and 4,6-dihydroxypyrimidine -3.27 -5.84 -3.48

28 g and 2,6 dihydroxytoluene -5.56 -3.13 -5.86

29 h and 4,4'-sulphonyldianiline -86.10 -63.34 -83.63

30 h and 1,3-phenylenediamine -50.90 -56.89 -52.13

31 i and 4,4'-diaminodiphenyl methane -53.20 -42.30 -51.80

32 i and 4,4'-diaminodiphenylether -16.24 -10.52 -15.17

33 i and p-phenylenediamine -9.76 -15.91 -9.45

34 i and m-phenylenediamine -9.26 -15.82 -9.15

35 and 2,4-diaminotoluene -1.00 -3.27 -1.08

36 j and p-phenylenedi-amine -13.00 -17.54 -13.77

37 j and 4,4'-diaminodiphenylether -12.60 -17.65 -13.36

Test set

38 a and 1,4-dihydroxybenzene -26.70 -23.73 -28.59

39 b and 1,4-dihydroxyanthraquinone -18.40 -15.82 -17.21

40 c and benzidine -8.60 -10.63 -8.01

41 d and 4,4'-Diaminodiphenylether -29.20 -35.77 -28.21

42 e and 4,4'-dihydroxydiphenyl sulfide -8.26 -7.24 -8.89

43 g and 4,4'-dihydroxydiphenyl sulphide -7.26 -5.71 -7.63

44 h and 4,4'-Diaminodiphenylmethane -60.30 -45.79 -62.47

45 i and 4,4'-diaminobiphenyl -12.12 -18.10 -12.85

Validation set

46 a and 2,6 dihydroxy toluene -13.20 -16.01 -12.28



next step, the Hyperchem output files were used by the
dragon package to calculate molecular descriptors. Dragon
is new, freely available software (by Milano Chemometrics
and the QSAR Research Group) for the calculation of more
than 1400 molecular descriptors [35]. After the calculation
of molecular descriptors, those that stayed constant and
near constant for all molecules were removed from the
descriptor pool, since those descriptors were not encoding
the structural differences between compounds. Further
reduction of the descriptor pool was attained by examining
pairwise correlations between descriptors so that only one
descriptor was retained from a pair contributing similar
information (correlation coefficient >0.9 in this study).
Finally, a total set of 648 remaining descriptors are
achieved and used to select optimal subset of descriptors.

Descriptors selection and QSAR models development

GA-PLS variable selection

The strategy implemented for genetic algorithm-based vari-
able selection in the frame of PLS regression can be described
through the different steps detailed in ref. [36] GA-PLS is a
sophisticated hybrid approach that combines GA [37] as a
powerful optimization method with PLS [38–40] as a robust
statistical method for variable selection. The combination of
variables and the internal predictivity of the derived PLS
model in GA-PLS correspond a chromosome and its fitness
in GA, respectively. GA-PLS consists of three basic steps.
(1) An initial population of chromosomes is created. Each
chromosome is a binary bit string, by which the existence of

a variable is represented. (2) A fitness of each chromosome
in the population is evaluated by the internal predictivity of
PLS. (3) The population of chromosomes in the next
generation is reproduced. Three operations, i.e., selection,
cross-over and mutation of chromosomes, are made in this
step. In the overall scheme, steps 2 and 3 are continued until
the number of the repetitions is reached at the designated
number of generations.

In this paper, GA-PLS followed Leardi’s method [36].
The values of empirical parameters affecting the perfor-
mance of GA-PLS were defined as in Table 2. Because
each GA gives a slightly different model, repeat each run at
least five times to verify the robustness of the predictive
ability and importance of the selected model. If some
variables (descriptors) are present only in one model, it can
be concluded that they have selected by chance and
therefore, they can be disregarded in the final model.

Partial least squares (PLS)

Partial least squares (PLS) regression is a modern technique
that generalizes and combines features from principal
component analysis and multiple regression. It is particu-
larly helpful when we need to predict a set of dependent
variables from a (very) large set of independent variables
(i.e., predictors). PLS regression has acquired a famous
position in chemometrics [41]. One reason for this is that it
overcomes the deficiencies of ordinary least squares (OLS)
regression in the case of highly collinear data. Besides, PLS
allows an analysis of the data in terms of independent latent
variables or components. These PLS components span a
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Table 1 (continued)

Number Name of monomers of polymers [M]D ( EXP ) [M]D ( PLS) [M]D (ANN)

47 b and 1,5-dihydroxy naphthalene -24.90 -21.58 -23.42

48 c and 3,3'-diaminobenzophenone -9.40 -6.84 -9.71

49 d and 1,3-phenylenediamine -32.30 -37.40 -33.65

50 f and p-phenylenediamine -9.70 -7.16 -9.50

51 g and 2,4-dihydroxyacetophenone -6.38 -4.14 -6.17

52 h and 4,4'-diaminobiphenyl -54.30 -43.15 -53.28

53 j and 4,4'-sulfonyldianiline -26.60 -20.21 -27.46

a is N,N'-(4,4'-hexafluoroisopropylidendiphthaloyl)-bis-L-isoleucine

b is 4,4'-(hexafluoroisopropylidene)-N,N'-bis (phthaloyl-L-leucine) diacid chloride

c is 4,4'-(hexafluoroisopropylidene) bis (phthaloyl-L-leucine)

d is 4,4'–(hexafluoroisopropylidene)-N,N'-bis-(phthaloyl-L-methionine) diacid chloride

e is N,N'–(4,4(-hexafluoroisopropylidenediphthaloyl)-bis-L-methionine

f is N,N '-(4,4'-oxydiphthaloyl)-bis-L-isoleucine diacid chloride

g is N,N′-(4,4′-oxydiphthaloyl)-bis-L-leucine

h is N,N'-(4,4'-oxydiphthaloyl)-bis-L-methionine diacid chloride

i is N,N'-(4,4'-oxydiphthaloyl)-bis-(s)-(+)-valine diacid chloride

j is N,N'-(4,4'-carbonyldiphthaloyl)-bis-L-leucine diacid chloride



subspace of the regressors (columns of X) that is relevant
for describing both X and the response Y. Ardent
proponents of PLS consider it superior to other biased
regression methods [42]. However, it is unlikely that there
is a single superior technique for predictive modeling.

It is assumed that X (n×N) contains the descriptors that
can be used for predicting the activities Y (n×M). It is
distinguished that PLS decomposes the data matrices X and
Y into a two matrices product plus residual in a single
process. The matrices E and F contain residuals for X and
Y, respectively:

X ¼ TP0 þ E ð2Þ

Y ¼ UQ0 þ F; ð3Þ
where T and U are score matrices and P'and Q' are loading
matrices for X and Y, respectively. These two equations can
be written as a multiple regression model:

Y ¼ XBþ G; ð4Þ
where matrix B contains the PLS regression coefficients
[43].

The PLS algorithm used in this study was the singular
value decomposition (SVD)-based PLS. This algorithm was
proposed by Lobert et al. in 1987 [44]. A brief discussion
of the SVD-based PLS algorithm can be found in the
literature [45–47]. The program of PLS modeling based on
SVD was written with MATLAB 7 in our laboratory [48].

Artificial neural network

The ANN is a computer-based system derived from a basic
idea of the brain in which a number of nodes, called
progressing elements or neurons, are interconnected in a
network [49, 50]. A detailed description of the theory behind
a neural network has been adequately described elsewhere
[51–53]. There is a range of artificial neural network
architectures designed and used in various fields. In this
study, a feed-forward neural network with back propagation
learning algorithm is used. The basic element of a back-

propagation neural network is the processing node. Each
processing node behaves like a biological neuron and
performs two functions. First, it sums the values of its
inputs. This sum is then passed through a transfer function to
generate an output. Any differentiable function can be used
as transfer function, f. All the processing nodes are arranged
into layers, each fully interconnected to the following layer.
There is no interconnection between the nodes of the same
layer. In a back-propagation neural network, generally, there
is an input layer that acts as a distribution structure for the
data being presented to the network. This layer is not used
for any type of processing. After this layer, one or more
processing layers follow, called the hidden layers. The final
processing layer is called the output layer.

In the present work, an ANN program was written with
MATLAB 7. This network was feed-forward fully
connected that has three layers with sigmoidal transfer
function. Descriptors selected by GA and PLS methods
were used as inputs of network and its output signal
represent the optical rotation of interested macromolecules.
Thus this network has six nodes in input layer and one node
in output layer. The value of each input was divided into its
mean value to bring them into dynamic range of the
sigmoidal transfer function of the network. The initial
values of weights were randomly selected from a uniform
distribution that ranged between -0.3 to +0.3 and the initial
values of biases were set to be one. These values were
optimized during the network training. The back-
propagation algorithm was used for the training of the
network. Before training, the network parameters would be
optimized. These parameters are: number of nodes in the
hidden layer, weights and biases learning rates and the
momentum. Procedures for the optimization of these
parameters were reported elsewhere [54, 55]. Then the
optimized network was trained using training set for
adjustment of weights and biases values. To maintain the
predictive power of the network at a desirable level,
training was stopped when the value of error for the test
set started to increase. Since the test error is not a good
estimation of the generalization error, the prediction
potential of the model was evaluated on a third set of data,

Population size 30 Chromosomes

Regression method PLS

Maximum number of variables selected in the same chromosome 30

Maximum number of components The optimal number

Response Cross-validated % explained variance

Probability of mutation 0.1

Probability of cross over 0.5

Number of evaluation 200

Number of run 100

Table 2 Parameters of the
genetic algorithm

J Mol Model (2011) 17:1743–1753 1747



named validation set. Compounds in the validation set were
not used during the training process and were reserved to
evaluate the predictive power of the generated ANN.

Estimation of the predictive ability of a QSAR model

For the optimized QSAR model several parameters were
selected to test prediction ability of the model. A real
QSAR model may have a high predictive ability, if it is
close to ideal one. This may imply that the correlation
coefficient R between the experimental (actual) y and
predicted y ̃ properties must be close to 1 and regression of
y against y ̃, i.,e. yr0 ¼ key should be characterized by k close
to 1 [56]. Slopes k is calculated as follows:

k ¼
P

yieyiPey2i : ð5Þ

The criteria formulated above may not be sufficient for a
QSAR model to be truly predictive. Regression line
through the origin defined by yr0 ¼ key (with the intercept
set to one) should be close to optimum regression line
yr ¼ aeyþ b. Correlation coefficient for this line R2

0 is
calculated as follows:

R2
0 ¼ 1�

P eyi � yr0i
� �2

P eyi � ey�� �2 ; ð6Þ

where ey� is the average value of the observed property and
the summations are over all n compounds in the validation
set.

A difference between R2 and R2
0values (R

2
m) needs to be

studied to explore the prediction potential of a model [57].
This term was defined in the following manner:

R2
m ¼ R2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

0

q���� ����� 	
: ð7Þ

Finally, the following criteria for evaluation of the
predictive ability of QSAR models should be considered:

1. High value of cross-validated R2 (q2>0.5).

2. Correlation coefficient R between the predicted and
actual properties from an external test set close to 1. R2

0

should be close to R2.
3. Slope of regression line (k) through the origin should

be close to 1.
4. R2

m should be greater than 0.5.

Results and discussion

PLS modeling

Table 1 shows the data set and corresponding observed PLS
and ANN predicted values of optical rotation of all
polymers studied in this work. Parameters of genetic
algorithm for generation of GA-PLS are shown in Table 2.
Table 3 shows the specifications of best PLS model. The
optimum number of latent variables to be included in the
model was three. It can be seen from this table that six
descriptors appeared in this model. These descriptors are:
gravitational index (G1), average valence connectivity
index chi-3 (X3AV), 3D-Harary index (H3D), 3st compo-
nent symmetry directional WHIM index/weighted by
atomic Van der Waals volumes (G3V), d CoMMA2 value/
weighted by atomic polarizabilities (DISPP), and mean
topological charge index of order10 (JGI10). Each of these
descriptors encodes different aspects of the molecular
structure. The numerical values of these descriptors are
shown in Table 4. Table 5 represents the correlation matrix
for these descriptors. By interpreting the descriptors in this
model, it is possible to gain some insight into factors that
are likely related to the optical rotation of the polymers.

For inspection of the relative importance and contribu-
tion of each descriptor in the model, the value of mean
effect (ME) was calculated for each descriptor by the
following equation:

MEj ¼
bj
P

n
i¼1dijP

m
j bj
P

n
i dij

; ð8Þ

where, MEj is the mean effect for considered descriptor j, βj

Table 3 Specification of partial least squares (PLS) method

Descriptor Notation Coefficient Mean effect

Gravitational index G1 -0.233 -38.941

Average valence connectivity index chi-3 X3AV -910.651 -72.089

3D-Harary index H3D 0.002 2.765

3st Component symmetry directional WHIM index /weighted by atomic Van der Waals volumes G3V -1586.036 -216.130

d CoMMA2 value / weighted by atomic polarizabilities DISPP -23.282 -9.895

Mean topological charge index of order10 JGI10 -1339.827 -16.802

Constant 330.887
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Table 4 The values of the descriptors that were used in this worka

Number G1 X3AV H3D G3V DISPP JGI10

1 227.132 0.081 254.350 0.134 0.239 0.015

2 208.374 0.084 229.090 0.132 0.962 0.013

3 112.484 0.077 284.580 0.134 0.521 0.014

4 123.840 0.075 208.360 0.133 0.581 0.015

5 185.239 0.073 260.650 0.132 0.828 0.017

6 159.378 0.079 257.750 0.130 0.233 0.019

7 159.333 0.073 206.760 0.140 0.212 0.017

8 135.524 0.071 247.770 0.131 0.778 0.019

9 189.576 0.074 225.290 0.132 0.478 0.018

10 126.759 0.080 239.470 0.132 0.819 0.018

11 181.687 0.085 920.790 0.135 0.215 0.019

12 122.058 0.073 237.830 0.139 0.186 0.017

13 169.241 0.081 931.560 0.135 0.187 0.013

14 161.790 0.078 876.720 0.139 0.177 0.013

15 258.851 0.078 868.740 0.139 0.158 0.012

16 125.151 0.079 240.370 0.137 0.316 0.013

17 121.153 0.079 190.970 0.136 0.161 0.013

18 111.276 0.075 178.260 0.139 0.174 0.012

19 127.816 0.073 192.670 0.140 0.167 0.012

20 215.127 0.094 1029.640 0.137 0.603 0.012

21 238.098 0.085 1033.340 0.137 0.539 0.010

22 281.334 0.082 11026.920 0.133 0.551 0.010

23 125.824 0.083 955.540 0.137 0.554 0.008

24 199.757 0.086 1029.810 0.141 0.523 0.010

25 155.780 0.075 348.360 0.130 0.807 0.011

26 82.939 0.071 288.510 0.143 0.588 0.009

27 93.847 0.078 283.260 0.138 0.636 0.008

28 91.363 0.078 303.300 0.136 0.625 0.009

29 246.203 0.099 1002.690 0.143 0.308 0.011

30 431.840 0.088 2006.470 0.122 0.178 0.010

31 218.947 0.079 1014.480 0.144 0.450 0.010

32 247.303 0.075 11008.700 0.135 0.429 0.010

33 162.615 0.075 945.690 0.139 0.429 0.009

34 167.999 0.075 938.050 0.139 0.428 0.008

35 118.058 0.082 281.590 0.135 0.216 0.010

36 145.376 0.078 268.210 0.142 0.234 0.010

37 232.027 0.078 10330.490 0.142 0.236 0.010

38 173.134 0.077 203.840 0.140 0.219 0.013

39 175.602 0.071 225.260 0.131 0.359 0.019

40 129.203 0.075 945.830 0.136 0.223 0.018

41 287.820 0.078 1095.200 0.131 0.239 0.013

42 112.827 0.073 205.730 0.135 0.669 0.012

43 96.921 0.075 313.780 0.134 0.877 0.010

44 364.954 0.088 1979.950 0.124 0.232 0.010

45 175.767 0.077 1011.700 0.135 0.476 0.011

46 144.741 0.078 192.850 0.139 0.200 0.013

47 173.501 0.073 246.080 0.133 0.530 0.017

48 152.610 0.075 921.140 0.131 0.222 0.017

49 249.474 0.079 945.510 0.136 0.243 0.014
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is the coefficient of descriptor j and dij is the value of
interested descriptors for each molecule, and m is the
number of descriptors in the model. The calculated values
of MEs are represented in the last column of Table 3 and
are also plotted in Fig. 2. The value and sign of mean effect
shows the relative contribution and direction of influence of
each descriptor on the optical rotation.

Of the six descriptors, three are geometrical (G1, H3D and
DISPP), one is topological (X3AV), one is WHIM (G3V) and
one is Galves topological charge index (JGI10). G1 reflects
the mass distribution in a molecule and defined as:

G1 ¼
XA�1

i¼1

XA
j¼iþ1

mimj

r2ij
; ð9Þ

where mi, and mj, are the atomic masses of the considered
atoms, rij is the corresponding interatomic distances and A is
the number of atoms of the molecule, respectively. The G1

index takes into account all atom pairs in the molecule. This
index is related to the bulk cohesiveness of the molecules,
accounting, simultaneously, for both atomic masses (vol-
umes) and their distribution within the molecular space [58].
Harary index (also called Harary number) is a molecular
topological index [59, 60] derived from the reciprocal
distance matrix D-1 by the Wiener operator W:

H ¼ W ðDÞ�1 ¼
XA
i¼1

XA
j¼1

d�1
ij : ð10Þ

The Harary index increases with both molecular size and
molecular branching; it is therefore a measure of molecular
compactness. DISPP is comparative molecular moment

analysis (CoMMA) descriptor. Geometrical representation
of the molecule calculates different molecular moments
with respect to the center of mass, center of charge and
center of dipole of the molecule [61, 62]. By calculating
molecular descriptors based on 3D geometry without a
common orientation frame, the CoMMA overcomes the
problems due to the molecular alignment. X3AV is a
valence connectivity index and can be calculated as
follows:

m#AV ¼
Xk
k¼1

Yn
a¼1

dv
 !

k

; ð11Þ

where k runs over all of the mth order subgraphs constituted
by n atoms (n = m + 1 for acyclic subgraphs); K is the total
number of mth order subgraphs present in the molecular
graph and in the case of the path subgraphs equals the mth

order path count and dvis valence vertex degree. This
topological descriptor (also called topological index)
describes the atomic connectivity in the molecule [63, 64].
JGI10, a topological charge index was proposed to evaluate
the charge transfer between pairs of atoms, and therefore
the global charge transfer in the molecule [65, 66]. As can
be seen in Table 3, from the above mentioned descriptors

Table 4 (continued)

Number G1 X3AV H3D G3V DISPP JGI10

50 154.444 0.073 963.200 0.134 0.555 0.009

51 93.133 0.076 300.250 0.136 0.556 0.012

52 210.846 0.088 1010.690 0.139 0.498 0.011

53 144.968 0.090 309.710 0.135 0.191 0.013

The definitions of the descriptors are given in Table 3
a The numbers refer to the numbers of the molecules given in Table 1

Table 5 Correlation matrix between selected descriptors

G1 X3AV H3D G3V DISPP JGI10

G1 1 0.494 0.451 -0.317 -0.146 -0.126

X3AV 1 0.043 -0.026 -0.055 -0.205

H3D 1 0.011 -0.048 -0.276

G3V 1 -0.277 -0.378

DISPP 1 0.003

JGI10 1
Fig. 2 Plot of descriptor_s mean effects
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only H3D has a positive sign for its mean effect. This means
that increasing the value of this descriptor causes the
increasing of the values of optical rotations and increasing
the values of the other descriptors decreases the [M]D values.

From the above discussion, it can be seen that all
descriptors involved in the QSAR model have physical
meaning, and these descriptors can account for structural
features that affect the optical rotation of the interested
molecules.

Neural network modeling

The next step was the construction of an ANN. During the
training of the ANNs, the parameters of network including
the number of nodes in the hidden layer, weights and biases
learning rates and momentum values were optimized.
Table 6 shows the architecture and specification of the
optimized network. After optimization of the network
parameters, the network was trained by using training set
for adjustment of the weights and biases values by back-
propagation algorithm. It is known that a neural network
can become over-trained. An over-trained network has
usually learned perfectly the stimulus pattern it has seen but
can not give accurate prediction for unseen stimuli. There
are several methods for overcoming this problem. One
method is to use a test set to evaluate the prediction power
of the network during its training. In this method after each
1000 training iterations, the network was used to calculate
[M]D of molecules included in the test set. To maintain the
predictive power of the network at a desirable level,
training was stopped when the value of errors for the test
set started to increase. Results obtained showed over-
training began after 48000 iterations.

The predictive power of the ANN models developed on
the selected training sets are estimated on the predictions of
validation set chemicals, by calculating the q2 that is
defined as follow:

q2 ¼ 1�
P

yi �byið Þ2P
yi � yð Þ2 ; ð12Þ

where yi and byi, respectively are the measured and predicted
values of the dependent variable (optical rotation), y is the
averaged value of dependent variable of the training set and
the summations cover all the compounds. The calculated
value of q2 was 0.996.

Table 1 represents the experimental, PLS and ANN
calculated values of optical rotation for the training, test and
validation sets. The statistical parameters obtained by ANN
and PLS models for these sets are shown in Table 7. The
standard errors of training, test and validation sets for the
PLS model are 5.494, 6.519, and 5.331, respectively which
would be compared with the values of 0.925, 1.132, and
1.047, respectively, for the ANN model. Comparison
between these values and other statistical parameters in
Table 7 reveals the superiority of the ANN model over PLS
one. The key strength of neural networks, unlike PLS
analysis, is their ability to do flexible mapping of the

Table 6 Architecture and specifications of optimized ANN model

Number of nodes in the input layer 6

Number of nodes in the hidden layer 5

Number of nodes in the output layer 1

Weights learning rate 0.3

Biases learning rate 0.2

Momentum 0.4

Transfer function Sigmoid

Table 7 Statistical parameters obtained using the ANN and PLS modelsa

Model SEc SEt SEv R2
c R2

t R2
v Fc Ft Fv

ANN 0.925 1.132 1.047 0.998 0.996 0.996 14688 2226 1645

PLS 5.494 6.519 5.331 0.916 0.885 0.906 383 47 58

a c refers to the calibration (training) set; t refers to test set; v refers to validation set; R is the correlation coefficient; SE is standard error and F is the
statistical F value

Fig. 3 Plot of ANN calculated optical rotation against experimental
values
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selected features by manipulating their functional depen-
dence implicitly.

The statistical values of validation set for the ANN model
was characterized by q2 =0.996, R2 =0.996, R2

0 ¼ 0:996,
R2
m ¼ 0:981 and k=1.006. These values and other statistical

parameters which are shown in Table 7 reveal the high
predictive ability of the model. Figure 3 shows the plot of the
ANN predicted versus experimental values for optical
rotation of all of the molecules in data set.

Conclusions

In the present work GA as a feature selection tool and PLS
and ANN as feature mapping techniques were used for
prediction of the optical rotation of 53 biodegradable
polymers. The optimized 6-5-1 ANN model showed a
remarkable improvement over the linear model. The GA-
based PLS approach is especially useful for modeling a
large variable data set. The physical meaning of the selected
subset of descriptors, which are the most predictive and
informative, from the GA method, is determined. The
optical rotations of investigated polymers were interpreted
rationally with these six descriptors. The squared correla-
tion coefficient, R2 values of the PLS model for the
training, test and validation sets were 0.916, 0.885 and
0.906 respectively which would be compared with the
values of 0.998, 0.996 and 0.996, respectively, for the ANN
model. Results obtained indicate that while the GA and
PLS methods could be more powerful in precise selecting
of important parameters and assume the significance of
each of descriptors, introduction of neural network gives a
significant improvement of prediction quality.
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